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Executive Summary  
 
 
Vehicle tracking is an important area of intelligent transportation systems (ITS) technology, 
which could be applied in a wide range of transportation applications. Tracking typically needs 
to monitor real-time vehicle movements, and thus real time tracking is highly desirable.  
However it is well known that vehicle tracking processes are computationally very intensive.  In 
the past, regardless of different algorithms employed in vehicle tracking, they have been 
implemented using software approaches, e.g., FPGA (Field Programmable Gate Array), micro-
controller or embedded micro-processor, and PCs. While software approaches have an advantage 
of flexibility in implementation and future modifications, its long computational time often 
prevents real-time vehicle tracking from high resolution spatial or temporal data. It is well 
known in the area of VLSI (Very Large Scale Integrated) circuit design that a customized and 
dedicated hardware implementation of any algorithm minimizes its computational time. This 
gives us the motivation for direct implementation of tracking algorithms in hardware (i.e., device 
level), whether it is a partial or full implementation, to enhance real-time operation. 
 
The goal of this seed project is to investigate the feasibility and related issues in developing a 
tracking system with a new tracking algorithm based on vehicle motion detection, which is 
implemented in hardware whenever possible so that the computational time for tracking is 
minimized. The proposed overall tracking system consists of two parts. One part is the hardware, 
more specifically, a CMOS (Complementary Metal Oxide Semiconductor) hardware processor 
which is mainly responsible for vehicle motion detection. The other part is the software, for 
example an FPGA or micro-controller which is responsible for analyzing the data transmitted 
from the hardware and properly associating vehicles for tracking. The main computational time 
saving for the tracking process comes from the hardware part since the core of the new tracking 
algorithm, motion detection, is run on a dedicated hardware for that particular purpose. 
 
The proposed tracking algorithm is simulated in MATLAB and tested on traffic images captured 
from an intersection. It is found that vehicle movements can be accurately identified in spite of 
some noisy motion. Also, in this project, we estimate the computational time for the tracking 
algorithm in hardware implementation and discuss high-level hardware designs for actual 
implementation of the tracking algorithm. 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 1 
 
Introduction and Previous Work 
 
 
Real-time operation is essential for tracking vehicle movements. For example, [1] presents a 
method for tracking and counting pedestrians using a single camera. In order to accurately 
capture important movement information, the system must acquire pictures at a high-frame rate. 
However, due to a large computational delay required by software implementation of the 
tracking algorithm, frame rate is limited. As reported in [1], the peak frame rate is at most 30 
frames/sec using low resolution gray scale images (256×256 pixels). As higher image resolution 
or colors are introduced for accuracy, the frame rate often drops to just a few per second, which 
may present significant problems in tracking accuracy [1].  
 
There are two ways to improve real-time operations. One is to develop new tracking algorithms 
that are simpler and faster, thus requiring less computational time. While this is feasible and has 
been under research [4], a tradeoff exists between the tacking accuracy and algorithm 
complexity. In general, the more complex the tracking algorithm is, the more accurate the 
tracking is, so the longer the computational time is.  
 
A more plausible solution is to make the computational of tacking algorithm faster by 
implementing the algorithm in hardware [12]. In order to get quantitative insight regarding the 
possible amount of improvements on the computational time for the tracking in the hardware 
approach as compared to the software approach, the tracking algorithm reported in [1] in 
software approach will be used as the reference work. The tracking algorithm in [1] is divided 
into three phases of operation: raw image processing, blobs graph optimization and Kalman 
filtering based estimation of object parameters. First, at the raw image level, Gaussian noise 
filtering, background subtraction and thresholding is performed to produce binary difference 
images in 256×256 pixels. The difference images are then supplied to the next phase of 
operation, where the changes with respect to two consecutive difference images are described in 
terms of motions of blobs. After extracting blobs from the difference images, blob motions with 
respect to two consecutive difference images is modeled as a graph optimization problem for 
which the overall goal is to find the blob motions that cause the smallest amount of size change 
with respect to two consecutive difference images. Note that in this process, additional 
constraints are enforced in order to make the graph manipulation computationally tractable [1]. 
But these constraints are based on the critical assumption that images are captured in a very high 
frame rate (which may contradict the actual situation of being not high frame rate). Also note 
that blob graph optimization is an iterative and enumerative process, which requires a lot of 
computational resources. In the final phase of the tracking algorithm, EKF (Extended Kalman 
Filtering) is used to estimate object parameters. Note that, the computational requirement of 
Kalman filtering is quite high and sometimes even beyond the system capability [5]. Without a 
proper timing control of Kalman filtering, the overall tracking performance may degrade 
significantly [5]. 
 



The overall tracking algorithm in [1] is implemented on a Datacube MaxVideo 20 video 
processor and a Max860 vector processor and is later ported to 400Mhz Pentium PC with C80 
Matrox Genesis vision board. For the software implementation of tracking algorithm, peak frame 
rate is reported to be 30 frames/sec while in many cases it drops to 10~20 frames/sec depending 
on the number of objects and weather conditions [1]. An inherent conflict exists between the 
requirement of higher time and space resolution (or to have high frame rate) and the requirement 
of a longer computational time by the software implementation. Note that the same tracking 
algorithm presented in [1] has been applied to many other cases, such as [2] [3] and the same 
software approach is used.  
 
Software implementation of the tracking algorithm, which already has a longer computational 
time, will experience a severe time-crunch problem when the algorithm is to improve the 
tracking performance by adding more processing steps. For example, considering the shape of 
objects being tracked adds a considerable amount of computational overhead [1]. Detection and 
classification of vehicles can only be done for two general classes (cars versus SUVs), while 
further classifying within the two classes significantly lengthen the computational time, 
preventing real-time classifications of vehicles [3]. To improve the tracking accuracy, some other 
operations, such as shadow removing, may be required, which again takes significant amount of 
computational time [1][6][7]. As a result, pure software approaches may not meet the more and 
more demanding requirement of real-time operations.  
 
Motivated by the limitations of the software approaches for vehicle tracking, there has been 
recent research interests in hardware implementation of algorithms used in different areas of ITS 
applications. Yang proposes a 256×256-pixle CMOS image sensor used in line-based vision 
applications [8]. Nakamura implements a sensor with inherent signal processing functionalities 
[9]. Fish also implements a CMOS filter which can be used in lane detection applications [10]. 
Hsiao uses circuit design techniques from previous works [8][9][10] and proposes a hardware 
implementation of a mixed-signal CMOS processor with built-in image sensor for efficient lane 
detection for use in intelligent vehicles [11]. Hsiao does not compare the computational time of 
the processor to that of software implementation for the lane detection algorithm, but it is shown 
that a hardware approach can even improve the performance of simple lane detection [11]. 
 
Drawing from the current and future demands for real-time operations of vehicle tracking, the 
seed project intends study the feasibility of developing a new tracking system largely based on a 
CMOS vision processor. Note that our main initiative to implement a CMOS vision processor is 
to improve real-time operation of vehicle tracking, since a hardware implementation of tracking 
algorithm could significantly improve the processing time compared to the software approach. In 
addition, a few other advantages can be identified for hardware implementation of tracking 
algorithm. First, the performance of real-time vehicle tracking will be greatly improved. Many 
other tasks that previously could not be incorporated in the tracking process due to computational 
time constraint may now be enabled. Second, potential improvements on tracking accuracy may 
be expected. For instance, the performance of lane detection for a CMOS processor is improved 
compared to the software approach, as reported in [11]. This may not be surprising from the 
VLSI circuit design point of view, since a dedicated hardware has less undesired effects, such as 
accumulated digitization error [12]. Another benefit is that the hardware size could be much 
smaller compared to micro-controllers (software implementation), thus the overall system will be 



more portable. Moreover, the power consumption of dedicated hardware will potentially be 
hundreds of times less compared to software implementations [12]. This feature would be 
especially important in the future effort to save energy. Even more importantly, the cost of the 
tracking system could be reduced to a fraction of that of software implementations.  
 
But we also identify some potential disadvantages of the hardware approach. First, the initial 
development cost may be huge and design cycle for a hardware processor is typically much 
longer than that of the software approach. This possible huge design effort could be only 
compensated for by extensive usage of the developed hardware in real ITS applications. Second, 
typically a hardware approach is not as flexible as a software approach. In the software approach, 
designers only need to change the software codes to adapt to new situations, whereas the 
hardware approach may not be easily adapted to new situations. Though reconfigurable design 
techniques can be applied during hardware design to achieve flexibility, this is at the expense of 
extra design effort and hardware components. 
 
The rest of the report is organized as follows. Chapter 2 presents the proposed motion detection 
based tracking algorithm. Chapter 3 investigates the feasibility of hardware implementation for 
the tracking algorithm to achieve high frame rate real-time operation. Finally, Chapter 4 
concludes the report. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 2  
 
The Proposed Motion Detection Based Tracking System 
 
 
The main initiative of hardware implementation of tracking algorithm is to minimize the 
computational time to improve real-time operation for vehicle tracking, but directly proceeding 
with hardware implementation of a tracking algorithm may make the overall design process 
impractical and un-rewarding considering other factors. The other factors that have to be 
considered for hardware design include the overall development cost, the overall hardware 
complexity (design cycle) and the required flexibility [12]. If the overall development cost is 
prohibitively high, then a software approach to implement tracking algorithm should be favored 
since micro-controllers are much cheaper. Similarly, if the design cycle is too long (time-to-
market is thus seriously delayed), hardware implementation is also at a disadvantage. 
Considering all these factors, a strong argument for hardware implementation is that the 
hardware can be designed in a both time and cost effective way and the designed hardware will 
be re-useable in different tracking algorithms [12]. The later also relates well to the area of 
Hardware-Software-Codesign [12] since we may expect that some processing steps of the 
tracking algorithm are more suited to hardware implementation while the others are to software 
implementation. Considering all these factors, simply taking an existing tracking algorithm, such 
as the one in [1][2][3], and implementing it in hardware may not be a good solution. In fact, our 
study shows that implementing the tracking algorithm in [1][2][3] in pure hardware is extremely 
costly. But on the other hand, if we implement only some part of the tracking algorithm in 
hardware, the overall computational time saving is not promising. As a result, improving real-
time operation of tracking is more than just pure hardware implementation, and instead it 
requires innovation in both tracking algorithm design, which has to be well suited to hardware 
design with reasonable design effort, and then hardware implementation of the tracking 
algorithm.  
 
 
2.1 Overview of the proposed tracking algorithm 
 
With the above guidelines, the seed project needs to consider the following two questions. First, 
what is the overall processing flow of the tracking algorithm? Second, for such a tracking 
algorithm, what processing operations can be implemented in hardware to minimize the 
computational time? These two questions are highly related to each other, and therefore can not 
be treated separately. 
 
Our proposed solution to the above questions is a new tracking algorithm based on vehicle 
motion detection, with motion detection being well suited to hardware implementation. The 
motion detection is based on the popular block-matching algorithm used in image processing 
[14]. The motion vectors found from the block matching process contain information on how and 
where the blocks of the images move. For the proposed tracking algorithm, a system diagram is 
shown in Figure 1 below. 
 



The processing flow of such a tracking system is explained as follows: 
•  Step 1: we assume that an image sensor or a digital camera captures images at a high frame 
rate, for example, 60-100 frames/sec. Note that this assumption has to be validated by relatively 
short computational time for the hardware approach.  
•  Step 2: each captured image frame is subject to Gaussian noise filtering to remove the thermal 
noise. 
•  Step 3: two consecutive image frames are first stored and then compared to identify object 
motion (in this case, the objects are vehicles). The vehicle motion detection is based on the block 
matching algorithm. The outputs of the block matching computation are the motion vectors of all 
blocks in the image. 
•  Step 4: the motion vectors that define whether each block moves and how it moves need to be 
digitized (if it is not digital signal) and transmitted to the next stage of processing. 
•  Step 5: in this final step, the data transmitted from the previous step is analyzed to identify 
moving vehicles and track how and where each vehicle moves.  
 
 

 
Figure 1. The system diagram of the overall tracking system 

 
 
For the proposed tracking algorithm, step one to step four are well suited to hardware 
implementation, whereas the final step is suited to software implementation. As a result, an ideal 
plan to implement the tracking system is to design a CMOS hardware processor for vehicle 
motion detection and then a software system for vehicle association and tracking. The reason for 
such a decision is that we believe it is a good tradeoff between computational time and 
development cost. If the overall tracking system is implemented in hardware, the development 
cost and design complexity could be huge. Another reason is that a hardware processor for 
vehicle motion detection can be widely used in many image processing applications and ITS 
applications [14]. In that case, it would be worthy of the possible high development cost and 
design effort associated with hardware implementation of the tracking algorithm. 
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Step 1 and step 2 are typical operations of vision-based vehicle tracking system [1]. Their 
hardware implementation will be discussed in the next Chapter. Step 3 is the core of the 
proposed vehicle tracking algorithm. The algorithm aspect of this step, i.e. the block matching 
algorithm, is discussed next while the hardware implementation is discussed in next Chapter. 
 
An illustration of block matching algorithm is shown in Figure 2 below. Suppose that the image 
size is M×S and the block size is n×n, then a total of (M×S)/(n×n) blocks are defined for each 
image (for illustration purpose, Figure 2 shows only 16 blocks for each frame). With respect to 
two consecutive images, shown as “current frame” (say frame number N) and “previous frame” 
(frame number N+1) in Figure 2, reference block A (the dark shaded region) in “current frame” 
can be considered as a moved version of block A’ in “previous frame” and block A’ is in the 
neighborhood area of the A. This neighborhood is defined by parameter p in all four directions 
(up, down, right and left) from the position of block A. The value of p is determined by the frame 
rate and object speed. If the frame rate is high, as we assumed in the proposed tracking system, 
then parameter p can be set small since we do not expect the block A has moved dramatically 
within a short period of time. In the neighborhood area of (2p+n)×(2p+n), there are a total of 
(2p+1)×(2p+1) possible candidate blocks and the block A’ in frame N that gives the minimum 
matching value is the one that becomes A in frame N+1. The matching value, more specifically 
MAD (Mean Absolute Difference), is defined as follows [14]: 
 
 
 
where             is the reference block of size n×n,                        is the candidate block within the 
search area and            represents the block motion vector. Though more accurate matching value 
computation can be obtained by using MSE (Mean Squared Error) criterion instead of MAD 
[14], MAD becomes a standard since the computational overhead of MSE may be significant due 
to square operation.  
 
 

 
Figure 2. Motion estimation based on full search block matching 
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In the above computation of MAD, pixel values corresponding to light density can be used if the 
image is of gray scale. Block matching algorithm has been widely used in image compression to 
save memory space [14], but it involves heavy computations, i.e. a huge number of subtractions. 
Whether the tracking system is able to achieve high frame rate real-time operation critically 
depends on the computational time of the block matching algorithm. From algorithm point of 
view, one way to reduce computation time of block matching algorithm is to use partial search, 
instead of full search. That is, instead of trying out all possible combinations of motion vector (u, 
v), only a subset is explored [14]. The other effective way is to use small p so that the number of 
motion vectors to be explored is relatively small. This could significantly reduce computational 
time. But in order to warrant small p, the tracking system has to operate at high frame rate, which 
on the other hand demands small computational time. Another way to reduce computational time 
is to use hardware implementation of the block matching algorithm. If the algorithm is 
implemented in software, as will be shown below in the case of MATLAB simulation on a PC 
(Personal Computer), the matching computation of all blocks takes excessively long time. 
Hardware implementation employing parallel processing techniques is very promising to reduce 
the computational time. This is to be discussed in next Chapter. 
 
The above block matching algorithm for motion estimation corresponds to step 3 in the proposed 
tracking algorithm. When block matching for all blocks is completed, the motion vectors are 
recorded and transmitted to the software part. This corresponds to step 4 of the tracking 
algorithm. As discussed in next Chapter, there are possible two techniques for hardware 
implementation of the tracking algorithm, analog and digital. If analog technique is used, a 
hardware unit for signal conversion in step 4 is necessary since step 5 is implemented in software 
which takes only digital signals as inputs. 
 
Step 5 is the last step of the proposed tracking algorithm. It is also a typical operation employed 
in conventional tracking algorithms [1][2][3]. This step is kept for software implementation due 
to the possible huge design effort if it were to be implemented in hardware. Besides, the 
qualitative reasoning nature of this step may not be well suited to a dedicated hardware 
implementation. 
 
 
2.2 Comparison with conventional tracking algorithm 
 
In this section, we compare the proposed tracking algorithm to the conventional ones in 
[1][2][3]. Both algorithms adopt the video based tracking approach. That is, the inputs to the 
tracking algorithm are images at different time instants.  
 
Regarding the difference, in general, motion detection in [1][2][3] is object-based, in contrast to 
block-based motion detection for the proposed tracking algorithm. [1][2][3] rely on background 
subtraction and then thresholding to identify objects (vehicles in the context). Using the 
terminology, these objects are called blobs [1]. The blobs can be extracted from the difference 
image using a contour following algorithm [1]. It does so for two consecutive image frames N 
and N+1, so that then these two difference images are compared to identify blob motion. To do 
that, it adopts a graph optimization approach. The blobs in each difference image is represented 
as a graph and the two consecutive graphs are optimized to find the a best matching of the blobs 



in terms of minimum total size change with respect to the two consecutive difference images. 
After this, blob motion data processing and Kalman filtering for prediction is used, similar to 
step 5 in the proposed tracking algorithm.  
 
We identify several disadvantages of the conventional tracking algorithm and explain the 
detailed difference from the proposed tracking algorithm in amid of the discussion. First of all, 
the background subtraction involves a static background image, but the background may keep 
changing, which is not well addressed even with dynamic background updates [1]. Further, the 
image frame after background subtraction (the difference image) is then thresholded to obtain a 
binary image. The threshold value has to be obtained by background training and is set to the 
absolute maximum fluctuation of pixel values (range from 0 to 255, for instance). This involves 
manual setting and could introduce undesirable noise [1]. In contrast, our approach of block 
matching does not require a static background image and the background change has negligible 
effect for block matching provided that the frame rate is high and the background change is 
uniform which is usually true. This makes the proposed tracking algorithm more robust to 
whether and environment changes. Second, after thresholding, the image is a binary digital 
image and only objects (blobs) are remained in the image. Note that by now the pixel data 
information is lost and all we know is that whether each pixel corresponds to background or 
object. But in the proposed tracking algorithm, the rich pixel data information is kept and 
intentionally used for block matching computation. This makes the block matching algorithm 
potentially more accurate since it is based on pixel value difference instead of size difference in 
graph optimization of conventional tracking algorithm. Also, graph optimization is an iterative 
optimization process, which may take significant computational time in software implementation 
(in the order of milliseconds as reported in [1]) depending on complexity of the graphs. It also 
relies on the assumption of high frame rate to achieve the reported execution time. It the 
assumption is not satisfied, then the graph optimization may incur tracking error.  
 
On the other hand, one possible disadvantage and the challenge of the project, is that the block 
matching algorithm in the proposed tracking system is even more complicated than graph 
optimization in conventional tracking algorithm from algorithm point of view and typically takes 
longer computational time. For example, block matching computation is in the order of minutes 
in MATLAB simulation. This means that the proposed tracking algorithm can not be applied in 
real applications if it is implemented using a software approach, such as MATLAB in general 
purpose PC and other embedded microprocessor. But on the other hand, block matching 
algorithm is well suited to hardware implementation. Therefore, we need to rely on efficient 
hardware implementation of the block matching algorithm so that the computational time for 
block matching would be minimized. In particular, in a first order estimation, the computational 
time of block matching in hardware implementation has to be lower compared to graph 
optimization in conventional tracking algorithm in order to have the proposed tracking algorithm 
outperform the conventional one. If this is true, we expect the conflict between the assumption of 
high frame rate and the actual computational time as in the conventional tracking algorithm 
would be solved or become less severe [1][2][3]. As a summary, the proposed new tracking 
system could improve real-time vehicle tracking, provided that the hardware implementation 
minimize the computational time of the block matching algorithm in step 3. 
 
 



2.3 Simulation and verification of the tracking algorithm 
 
In the context of the above described tracking system shown in Figure 1, our first step toward 
feasibility study of the proposed tracking algorithm is to simulate and verify the tracking 
algorithm in MATLAB [19]. All tested traffic images were obtained at the intersection before 
District I DoT building (intersection between Mesaba avenue and I-194) by a JVC Camcorder at 
30 frames/sec. Note that these images were not captured optimally, in the sense that no special 
case was taken to mount the Camcorder to get a best view of the intersections. The recorded 
video was then converted to sequences of image frames using QuickTime Pro software [20]. By 
testing it on real traffic images, we found that vehicle movements could be accurately identified 
in spite of some noisy motion detection. In the following, we show some results obtained in 
MATLAB and illustrate some features of the proposed tracking system. The image size is 
720×480 and the block size is 8×8. The parameter p that defines the search region is set to 8. 
 
Figure 3 and 4 show two consecutive image frames with a number of vehicles (frame N and 
frame N+1). The vehicles enclosed by the red box in Figure 3 actually moved with respect to 
Figure 4. Specifically, vehicles A and E moved to the right, whereas vehicles B, C and D moved 
to the left. Other vehicles either did not move or too small in the Figure. Note also these two 
images were colored. When we tested the images on the proposed tracking algorithm, we 
converted them first to gray images with the same size. Thus, only light density information was 
used in blocking matching. Then, the two gray images were Gaussian-filtered to eliminate 
thermal noise and subsequently they were block matched to identify the motion vector for each 
block in the image. The block size was 8×8, therefore there were a total of 90×60 blocks defined 
in image frame. Here, there are tradeoffs in selecting the block size. If the block size is too large, 
then some blocks may not accurately represent a vehicle since each vehicle may be represented 
with multiple blocks. For example, a block may show only part of the vehicle and the rest of the 
block is just background. On the other hand, small block sizes may create multiple solutions in 
block matching. This is because the feature of a small block is less unique, and it is more likely 
that there exist many blocks nearby with similar features. This may result in wrong decisions for 
the motion vectors. 
 
Next, in order to show the motion detection by the proposed tracking algorithm, we define the 
following definitions. Suppose that a block A has original coordinates as (x, y) in image frame 
N. To be uniform, (x, y) is taken as the coordinates of the upper-left corner of a rectangular 
block. Further suppose that the block A is found to be moved to (x’, y’) in image frame N+1, 
determined by the block matching process. Then we define motion of block A in the following 
five cases: 
 
1 represents moving up if block A has (y’>y && |y’-y|>=|x’-x|) 
2 represents moving down if block A has (y’<y && |y’-y|>=|x’-x|) 
3 represents moving right if block A has (x’>x && |x’-x|>=|y’-y|) 
4 represents moving left if block A has (x’<x && |x’-x|>=|y’-y| 
5 represents no move if block A has (x’=x && y’=y) 
 
Note that it is possible to define more refined movements, for example, moving both up and 
right. But we found that it is typically enough to identify the motion using the above five 



directions due to high frame rate and moderate resolution of the images. Also note that 5 does 
not mean necessarily that the block is a background block. In fact, a vehicle could also have 5 if 
it is not moving.  
 
With the above definitions, we can now present the motion diagram showing the motion of each 
block computed from block matching. Since the block size is 8×8 pixels, all pixels in the block 
have the same moving direction. Therefore, it is enough to show how each block moves. This 
gave the following Figure 5 with dimension 90×24 and each element corresponded to the motion 
of that block. Note that only 24 out of 60 blocks in y-axis were shown in Figure 5, due to the 
upper part and lower part of the image frames anyway corresponding to background (background 
should not move). The red boxes in Figure 5 represent the same vehicles as in Figure 3. It can be 
seen that vehicle motion for those vehicles is accurately identified. For example, vehicles A and 
E had many values of 3 for the blocks corresponding to the vehicle positions in the image. 
Practically, the number of 3s is also a good idea of the size of the vehicle in the image. Here, the 
red box A actually represents two vehicles. Vehicles B, C and D had values of 4 for the blocks 
and the number of 4s can also be seen as good indication of the size of the vehicles. The left-
most white vehicle and a few other vehicles beside B (refer to Figure 3) had no motion since they 
were waiting for the traffic signal. So, the motion diagram for these vehicles should be 5, which 
was the case as shown in Figure 5. But note first that there were some noisy motion detections, 
which typically happened to background blocks since the background was quite uniform and 
block matching computational might made wrong decisions. And this noisy motion also 
happened to vehicle E, especially at the right edges of E (some 1s and 2s there). This was 
because the vehicle E was moving out of the scene, and those blocks at the right edge could not 
find correct matching since they disappeared in the next image frame. This wrong decision could 
be corrected at the software part of the tracking algorithm, where information on current vehicle 
location, predicted future vehicle location (by Kalman filtering) and vehicle size change can be 
combined to fix it. This problem would not happen to vehicles staying inside the image for two 
consecutive image frames. Second, here in Figure 5, there is no way to differentiate vehicles if 
multiples vehicles are grouped and move in almost the same direction. To differentiate them, 
motion vectors need to be check up and Kalman filtering in the software part of the tracking 
system need to be used. Also, since we did not optimize the location of the Camcorder and view 
of the intersection, the traffic poles became a problem in block matching, which might be a 
source of error for noisy motion. In addition, there were no cars identified moving up or down. 
 
Figure 5 gives the motion of each block, but could not tell where each block moves. To gain that 
information, we show the motion vectors in Figure 6 for y-direction (rotated 90 degrees for better 
view) and Figure 7 for x-direction. It can be seen that almost no blocks move in the y-direction 
except those block corresponding to vehicle E, which is almost the case in image frame N with 
respect to frame N+1. The vehicle that actually moved slightly along y-direction was vehicle E in 
Figure 3, and this movement was represented by 1 or 2 units. Note that, the values here should 
not be confused with the motion direction values as defined above and shown in Figure 5. Here, 
the values correspond to the movements in terms of (x, y) coordinates of the image, 0 to 720 
along x-direction and 0 to 480 along y-direction. As a result, these values are called motion 
vectors since they show how much the vehicles move. In Figure 7, the block motion vectors in x-
direction for all vehicles were shown. Right moving vehicles like A and E had positive values 
and left moving vehicles like B, C and D had negative values. For four of the five vehicles A, B, 



C and D, the motion vectors in x-direction were quite good and accurate. One problem here was 
that there were noisy motion detections for some blocks corresponding to the background. This 
could be corrected by defining smaller search regions (thus small parameter p) in block matching 
computation assuming high frame rate for the tracking system. Besides, there were also noisy 
motion detections around the edge of vehicle E due to vehicle E moving out of the scene. As 
mentioned in the above paragraph, this could be fixed in the software part of the tracking system. 
Practically, the values could be used to compute vehicle velocity. Of course, the effect of camera 
view on the vehicle velocity should also be taken into account in that case. 
 
In the MATLAB verification of the tracking algorithm, the image size is 720×480 and the block 
size is 8×8. For computing the motion vectors of the 90×24 blocks in Figure 5, 6 and 7, the 
execution time was about 30 to 40 minutes in a Dell PC with 1Ghz XEON microprocessor. This 
time is simply NOT acceptable to have the proposed tracking algorithm to be useful in a software 
approach like the PC. Hardware implementations to cut down the execution time are discussed in 
next Chapter. 
 
 
 
 
 
 
 

 
 

Figure 3. A traffic image captured at an intersection (frame N) 
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Figure 4. A traffic image captured at an intersection (frame N+1) 
 



 
 

Figure 5. The block motion of frame N with respect to frame N+1 
 



 
 

Figure 6. The block motion vector in y-direction 



 
 

Figure 7. The block motion vector in x-direction 



Chapter 3 
 
Feasibility of Hardware Implementation for the Tracking 
Algorithm 
 
 
In the previous Chapter, we describe the overall operation of the proposed tracking algorithm 
with block matching based motion detection. The algorithm is also simulated in MATLAB to 
verify its ability to track vehicles in spite of some noisy motion. The main motivation for such an 
algorithm is to enable hardware implementation of the tracking system since conventional 
tracking algorithm with graph optimization based motion detection may not be well suited to 
hardware implementation [1]. In spite of long execution time for the proposed tracking algorithm 
in MATLAB on a PC (the software approach), we hope that hardware implementation could 
significantly cut down the execution time so that the execution time for vehicle tracking would 
be smaller compared to conventional tracking algorithm implemented in software approach. 
Investigating the feasibility of design of a CMOS hardware processor for vehicle motion 
detection (corresponding to step one to step four of the proposed tracking algorithm) is the main 
topic of this Chapter. Next, we present first order timing analysis of the proposed tracking 
algorithm with hardware implementation to see whether it has the potential to achieve better real 
time operation than the traditional tracking algorithm with software implementation. 
 
 
3.1 First order estimation of computational time for hardware 
implementation 
 
Referring to the tracking system diagram in Figure 1, the first hardware part is the image sensor 
or digital camera. But it has to be high-throughput to minimize the latency when outputting data 
(the data is pixel values of the image). For example, a commercial image sensor, such as the 
MT9V111 sensor from Micron Technology [21], runs at a high frame rate of 60 frames/second 
with resolution of 352×288 pixels. The master clock is 27 MHz and the output is 8-bit parallel. 
Assuming 8-bit is used to represent each pixel, it takes 3.75 milliseconds to transport all the data 
to block matching in the proposed tracking algorithm. Note that each cycle of vehicle tracking 
has to finish within 1/60=16.67 milliseconds. Considering that the software part in Figure 1 
(corresponding to step 5 of the proposed tracking algorithm) takes up to 10 milliseconds for 
vehicle association and Kalman filtering, this leaves only 16.67-10-3.75=2.9 milliseconds for 
motion detection based block matching. In conventional tracking algorithm [1], the motion 
detection based on graph optimization may not be able to meet the tight timing constraint. As a 
result, it is not possible to achieve high frame rate.  
 
Therefore, we need to estimate whether the block matching computation in the proposed tracking 
algorithm can finish within such a timing frame. Note that the most important function in block 
matching algorithm is subtraction operation (refer to the definition of MAD criterion for block 
matching in last Chapter), which needs to be implemented by a high-speed hardware adder block 
(subtraction is implemented by the adder in hardware, the same as addition operation). For 



example, refer to Figure 2, if the block size is n×n, then n×n additions are needed for one 
candidate motion vector (u, v). As mentioned in last Chapter, in the search region (defined by 
parameter p), there are a total of (2p+1)×(2p+1) candidate motion vectors to be matched (this is 
full search block matching), thus theoretically this means that there are n×n×(2p+1)×(2p+1) 
additions for one block matching. Then considering there are total of (M×S)/(n×n) blocks in an 
image, this simply implies that the total number of additions in block matching is as follows: 
 
TC = n×n×(2p+1)×(2p+1)×(M×S)/(n×n)  
 
Then assuming that each addition in hardware takes time td to finish, a rough estimate of the 
total computational time would be 
 
TT = TC×td 
 
So, then it comes down to find out td. To do that, we implement in Cadence [13] an adder circuit 
using TSMC 0.25µm technology [22]. This adder employs carry look-ahead technique [24], 
which typically has the smallest execution time compared to many other techniques [12]. When 
simulated in Cadence, the estimated execution time was about 2 nanoseconds considering also 
the time incurred when storing the output into a memory. Substitute this value into the above 
equation, we can find out that the total computational time for block matching is: (image size 
M=352, S=288, block size n=8, search region p=8): 
 
TT = 29297664×2 nanoseconds = 58.6 milliseconds 
 
Although the adder execution time was pessimistic and could be made smaller, the above TT 
shows that using the simple hardware implementation was not enough since 58.6 milliseconds 
much larger than the timing constraint of 2.9 milliseconds for overall block matching 
computation. 
 
Note that the previous method uses sequential computation of adder function. That is, before one 
candidate block matching is complete, the second one can not start. This is a waste of time, but 
save hardware. For example, the above sequential computation employs only one adder. 
Typically, to improve hardware throughput, pipelining technique can be used at the expense of 
extra hardware design. One possible pipelining technique in the context of block matching 
without incurring much extra hardware design is called the systolic array processing technique, 
which allows parallel processing of block matching [23]. In this approach, we would use n×n 
adder circuits for block matching computation (compared to only one adder for the previous 
case). It can be shown that using this parallel architecture, the number of additions for one block 
matching decrease to (n+2p)×(n+2p) from the previous n×n×(2p+1)×(2p+1) for sequential 
computation [23]. Then, the total execution time for block matching in this case would be 
(M=352, S=288, n=8, p=8): 
 
TTp = (n+2p)×(n+2p)×(M×S)/(n×n)×td = 912384×2 nanoseconds = 1.8 milliseconds 
 
Thus, it can be seen that now the execution time for block matching would meet the requirement 
of 2.9 milliseconds in order to achieve 60 frames/second vehicle tracking. In spite of only a first 



order estimation (we neglected many control overheads in hardware design), it shows that 
hardware implementation could potentially achieve real time operation of vehicle tracking. Also, 
if more advanced technology, such as 0.18µm, 0.13µm etc, is used, smaller execution time is 
expected. 
 
Note that in the previous estimation, we assume that M=352, S=288, n=8 and p=8. Parameter n 
and p are quite reasonable under normal conditions. But it is arguable that M and S are enough 
for high resolution tracking. If both M and S are increased, the computational time is not 
satisfying. In that case, on solution is to further take advantage of massive parallel processing 
techniques at the expense of hardware cost and design complexity. For example, more adder 
circuits can be included in the hardware. Note that the number of adders in the above case of 
parallel processing is n×n. If we had X times that number of adders, we can partition the original 
image into X equal parts so that each group of adders (n×n) works on one part. This would help 
cut down the execution time for block matching to 1/Xth of TTp in the previous equation. In this 
way, block motion vectors can be very efficiently computed.  
 
 
3.2 High-level view of hardware design for the tracking algorithm 
 
In terms of hardware design, two possible techniques, digital and analog, can be used. Between 
them, digital technique for hardware design has been by far the most popular. In fact, there have 
been some digital VLSI implementations of the block matching algorithm for motion detection 
[16][17][23] for different applications such as low resolution video conferencing with 15 
frames/second. On the other hand, analog technique for such type of hardware design is rarely 
used, not because of the performance issue, but mainly because of the design effort issue. 
Typically, analog technique for hardware design is much harder and more time-consuming. 
Next, we briefly discuss both techniques for hardware implementation of the proposed tracking 
algorithm. 
 
For digital technique for hardware implementation, the signal processing flow is more 
straightforward and it can save Analog-to-Digital or Digital-to-Analog converters since the 
signal is always digital. Referring to Figure 1, the image sensor or digital camera can be 
commercial ones. Then in the second step of Gaussian filtering, standard adders and multipliers 
can be used. The detailed hardware design for block matching computation should take the 
systolic array architecture proposed in [23]. The output will be motion vectors in digital format, 
which are then transmitted to software part for vehicle association and Kalman filtering.  
 
Analog technique for hardware design is an alternative. In fact, it typically saves more 
computational time than digital technique [18]. In this case, an image sensor may have to be 
designed instead of a commercial one. We favor the use of a built-in image sensor since an 
integrated image sensor could help shorten the image processing time. In the case of image 
sensor, output signal is analog current or voltage, the value of which is proportional to the pixel 
values (or the light intensity). The image can be a high-resolution one (for instance, 1024×1024) 
due to computational time saving compared to a low-resolution (256×256) image in traditional 
software approaches [1][2][3]. Then each image frame goes through Gaussian filtering to 
eliminate noise, which can also be efficiently performed using analog techniques (analog 



multipliers and analog adders) [18]. The resulting frame N can be stored temporarily in an analog 
memory. In this scenario, an effective analog memory could be arrays of capacitors to hold the 
voltage corresponding to pixel values of the image. Special techniques may be required to 
prevent voltage loss or leakage that affects accuracy of block matching computation [18]. When 
frame N+1 is available, the block matching module is used to detect vehicle motion for the two 
consecutive images. Again, parallel processing technique is probably necessary to minimize the 
execution time. Finally, the motion vectors obtained from block matching need to be converted 
to digital signal before they are transmitted to the software part. Thus, an Analog-to-Digital 
converter circuit is needed. 
 
After receiving the data of block motion vectors from the hardware part, the software part 
performs vehicle association and tracking. Since these data are motion vectors of all blocks, any 
block with zero motion vector is either background or non-moving vehicles, and on the other 
hand any block with non-zero motion vector is a moving object or part of a moving object. 
Especially, we are interested in a number of neighboring blocks in image frame N that move to 
new positions but still form neighboring blocks in image frame N+1, which implies a moving 
vehicle. To check whether they still form neighbors can be done by simply looking into the 
corresponding motion vectors. The number of blocks involved for a certain vehicle depends on 
several factors, such as vehicle’s size, vehicle’s moving direction and camera’s position. But in 
all cases, it is most likely that the vehicle in the image frame consists of more than one block in 
realistic images as those shown in Figure 3 to 7. Under ideal cases with no vehicle shadowing, 
blocking and noise, these motion vectors themselves track how and where each vehicle moves 
and Kalman filtering is not needed. But realistically, noisy or false motion, blocking and 
shadowing occurs frequently. So, Kalman filtering is still needed in the software part so that 
future positions of the blocks can be predicted. This is especially helpful in the case of vehicle 
blocking.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter 4 
 
Conclusion 
 
 
This seed project studies the feasibility of developing a hardware based tracking system. We first 
survey the literature work on vehicle tracking algorithm and find conventional tracking 
algorithms are not well suited to hardware implementation. Developing a hardware based tacking 
system requires a revised tracking algorithm that could ease hardware implementation. Thus, we 
propose a new tracking algorithm with motion detection based on block matching. To validate 
such a tracking algorithm, we simulate it in MATLAB and test it on real traffic images obtained 
from an intersection. It is found that vehicle motion can be accurately detected in spite of some 
noisy motion for background and vehicles on the edge of the image. This error can typically be 
corrected at the software part.  
 
With the proposed tracking algorithm validated, we study the feasibility of hardware 
implementation of the tracking algorithm. A first order analysis is applied to estimate the total 
computational time for block matching for a typical image size of 352×288 as specified by 
commercial high frame image sensors (60 frames/second). Assuming the block size is 8×8 and p 
is 8 for the search region, we find that the timing constraint to achieve 60 frames/second can be 
satisfied using parallel processing techniques in hardware design.  
 
Overall, the proposed tracking system with hardware implementation shows promising features 
compared to conventional tracking system with software implementation. Future work along this 
direction includes actual hardware implementation of the tracking algorithm, detailed and 
accurate characterization of computational time, and development of the software part so that a 
prototype of the overall tracking system can be tested.  
 
Two potential problems need further investigation. First, if the resolution of the image is further 
increased but high frame rate (e.g. 60 frames/second) needs to be maintained, hardware 
implementation with massive parallel processing techniques may be over-complex. Second, 
when the computational time of the tracking system is dominated by the software part, then 
implementing hardware for block matching computation alone may not be rewarding. In that 
case, moving (some) operations in the software part to hardware may be considered. 
 
 
 
 
 
 
 
 
 
 
 



Bibliography 
 
 
[1] O. Masoud, N. P. Papanikolopoulos, “A Novel Method for Tracking and Counting 
Pedestrians in Real-Time Using a Single Camera”, IEEE Transactions on Vehicular Technology, 
Vol. 50, No. 5, Sep. 2001, pp. 1267-1278. 

[2] O. Masoud, N. P. Papanikolopoulos, “ The Use of Computer Vision in Monitoring Weaving 
Sections”, IEEE Transactions on Intelligent Transportation Systems, Vol. 2, No. 1, Mar. 2001, 
pp. 18-25. 
[3] S. Gupte, O. Masoud, R. F. K. Martin, N. P. Papanikolopoulos, “Detection and Classification 
of Vehicles”, IEEE Transactions on Intelligent Transportation Systems,Vol. 3, No. 1, Mar. 2002, 
pp. 37-47. 

[4] H. Veeraraghavan, O. Masoud, N. P. Papanikolopoulos, “Computer Vision Algorithms for 
Intersection Monitoring”, IEEE Transactions on Intelligent Transportation Systems, Vol. 4, No. 
2, Jun. 2003, pp. 78-89. 
[5] S. S. Blackman, “Multiple-Target Tracking with Radar Applications”, Chapter 2, Artech 
House Inc, 1986. 
[6] Y. Wu, F. Lian, C. Huang, T. Chang, “Traffic Monitoring and Vehicle Tracking using 
Roadside Camera”, Proc. of  2006 IEEE International Conference on Systems, Man and 
Cybernetics. 
[7] Z. Jia, A. Balasuriya, “Vision Based Target Tracking for Autonomous Vehicles Navigation: a 
Brief Survey”, Proc. of 2006 IEEE International Conference on Systems, Man and Cybernetics. 
[8] N. Yang, G. Jianhong, “ A 256×256 Pixel Smart CMOS Image Sensor for Line Based Stereo 
Vision Applications”, IEEE Journal of Solid State Circuits, Vol. 50, No. 3, Aug. 2004, pp. 1055-
1061. 
[9] J. Nakamura, B. Pain, T. Nomoto, T. Nakamura, E. R. Fossum, “On-focal-plan  Signal 
Processing for Current-mode Active Pixel Sensors”, IEEE Transactions on Electron Devices, 
Vol. 44, No. 10, Oct. 1997, pp. 1747-1758. 

[10] A. Fish, O. Yadid-Pecht, “ CMOS Current/Voltages Mode Winner-Take-All Circuit with 
Spatial Filtering”, IEEE International Symposium on Circuits and Systems, Vol. 3, May 2001, 
pp. 636-639. 
[11] P. Hsiao, H. Cheng, S. Huang, L. Fu, “A Mixed-Signal CMOS Imager with Lane Detector 
for Use in Smart Vehicles”, Proc. of 2006 IEEE International Conference on Systems, Man and 
Cybernetics. 
[12] J. Rabaey, A. Chandrakasan, B. Nikolic, “Digital Integrated Circuits: A Design 
Perspective”, 2nd Edition, Chapter 8, Prentice Hall, 2003. 
[13] “Cadence User Guide”, Cadence Design System Inc, 2005. 
[14] A. M. Tekalp, “Digital Video Processing”, Prentice Hall, 1995. 

[15] “SIMLINK and MATLAB Users Guides”, The Mathworks Inc., 2006. 



[16] Y. Huang, S. Chien, B. Hsien, L. Chen, “Global Elimination Algorithm and Architecture 
Design for Fast Block Matching Motion Estimation”, IEEE Transactions on Circuits and 
Systems for Video Technology, Vol. 14, No. 6, Jun 2004. 
[17] H. Yeo, Y. Hu, “A Modular High-Throughput Architecture for Logarithmic Search Block 
Matching Motion Estimation”, IEEE Transactions on Circuits and Systems for Video 
Technology, Vol. 8, No. 3, Jun 1998. 

[18] B. Razavi, “Design of Analog CMOS Integrated Circuits”, McGraw Hill, 2001. 
[19] “Using Matlab Version 7”, The Mathworks Inc, 2006.  

[20] “Quick Time Pro”, Apple Inc, 20006. 
[21] “MT9V111 Product Flyer”, Micron Inc, 2006.  

[22] “TSMC 0.25µm process user manual”, Taiwan Semiconductor Manufacturing Company, 
2002. 

[23] C. H. Hsieh, T. P. Lin, “VLSI Architecture for Block-Matching Motion Estimation 
Algorithm”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 2, No. 2, 
Jun 1992, pp. 169-175. 
[24] S. Rowan, P. Bushey, “Project report: Carry Look-ahead Adder Design in TSMC 0.25 
micron technology”, ECE Department, University of Minnesota Duluth, 2006.  


